Question		ion	Answer	Marks	Guidance
1	а		p.d./voltage (across component) divided by current (in it)	B1	accept V/I with V and I defined; per (unit) current, etc
	b	i	$R = \rho I/A$ = 1.7 x 10 ⁻⁸ x 20 x d/4d ² = 1.7 x 10 ⁻⁸ x 5/3.8 x 10 ⁻¹⁰ =220 (Ω)	C1 C1 A1	allow A = $4\pi r^2$ = 4.5 x 10 ⁻¹⁹ giving 285 Ω accept 220 to 230 Ω
		ii	$n = 1/d^3 = (1.8 \times 10^{28})$	A1	accept alternatives, e.g. 80/volume
		iii	I = nAev = 1.8 x 10 ²⁸ x 4 x (3.8 x 10 ⁻¹⁰) ² x 1.6 x 10 ⁻¹⁹ x 1.9 x 10 ⁻⁵ = 3.2 x 10 ⁻¹⁴ (A)	C1 A1	1 mark for substitution into formula, ecf n, A values accept 3.16 and 3.5 (using n = 2×10^{28}) accept 2.48 and 2.76 (for 285 Ω)
		iv	$P = I^{2}R$ = (3.2 x 10 ⁻¹⁴) ² x 200 x 10 ⁹ = 2.0 x 10 ⁻¹⁶ (W)	C1 C1 A1	ecf b(i) & (iii) accept 1 SF as estimate; can obtain 1.2 to 2.8 using all values possible in (iii)
	C		electron moves at drift velocity signal travels at/close to the speed of light	B1 B1	accept answers explaining idea of drift velocity
			Total	12	

Question		on	Expected Answers	Μ	Additional Guidance
2					
	а		current moves from + to – (of battery in circuit) and electrons move from – to +	B1	
	b		$C S^{-1} V \Omega^{-1}$	B1	2 correct 2 marks; 1 correct 1 mark, withhold a
				B1	mark for each additional answer given
	С	i	statement of Kirchhoff's first law or conservation of charge	B1	accept wires are in <u>series</u> or current is the same (at every point) in a <u>series</u> circuit/AW not current in = current out
		ii1	$R = \rho I/A$	B1	accept R α I and R α 1/A or similar
			calculation to justify $R = 72 \Omega$	A1	method/argument must be convincing accept
					3/1/2 x12 but not 3 x 2 x 12
		ii2	R = sum of Rs	C1	accept Rs in series
			R = 84 Ω	A1	ecf (c)(ii)1
		iii	select I = nAev	B1	allow v α 1/A
			$v = 4.0 \times 10^{-5} (m s^{-1})$	B1	accept 4 x 10 ⁻⁵ (m s ⁻¹) no SF error
			Total question 1	10	

Question		on	Expected Answers	Marks	Additional Guidance
3	(a)		E = I(R + r)	B1	
	(b)	(i) 1 2	0.80 Ω 6.4 V	B1 B1	
		(ii)	(sum of) e.m.f.s = sum /total of p.d.s/sum of voltages (in a loop)	B1	
		(iii)	6.4 = 0.80I I = 8.0 A	C1 A1	can be 2 ecf from (b)(i) , eg 21.6/0.8 = 27 A (1 ecf) or 21.8/0.68 = 31.8 A (2 ecf)
	(c)	(i)	$Q = It = 2.5 \times 6 \times 60 \times 60$ = 54000 (C)	C1 A1	allow 1 mark if forgets one or two 60's giving 900 C or 15 C
		(ii)	energy = QE = 54000 x 14 = 756000 (J)	C1 A1	allow (use of 12 V gives) 648000 J for 1 mark
		(iii)	energy loss = I2Rt = VIt = 2 x 2.5 x 6.0 x 60 x 60= 108000 J percentage = (108000/756000) x 100 = 14%	C1 A1	accept QΔV = 54000 x 2.0 = 108000 J accept QΔV/QE = 2.0/14.0 = 14% not 756000/54000 = 14%
			Total question 2	12	

Question			Expected Answers	Μ	Additional Guidance
4	а	i	ions	B1	
		ii	positive ions	B1	allow positive charges / cations
		iii	electrons	B1	
	b	i	the battery has an internal resistance/AW	B1	accept connecting leads have resistance
			some of the emf is across the (internal) resistance (leaving a	B1	accept V = E - Ir or 'lost volts'/p.d. across r
			smaller p.d. across motor)		
		ii	use E = V + Ir	C1	accept reverse solution, 0.10 $\Omega \rightarrow 8 V \rightarrow 12 V$
			giving $12 = 8 + 40r$	M1	substitution and or
			r = (12 - 8)/40 or $4/40$	M1	solution showing working
			= 0.10 Ω	A0	
		iii	$Q = It = 40 \times 1.2$	C1	
			I= 48 (C)	A1	
	С	i	The current heats the filament	B1	no mention of temperature increase or heating
			The resistance/resistivity (of the metal filament) increases (with		scores zero
			temperature).	B1	
		ii	4.5 to 8 A in each (parallel) arm or 9 to 16 A for both together	B1	no mark if fuse value outside range
			needs to be great enough to cover initial surge/current or use	B1	
			antisurge fuses		
		iii	e.g. the starter motor draws 40 A so would need a bigger fuse	B1	accept headlamp circuit damaged before fuse
			than headlamp circuit so need different fuses for different		blows if 40 A fuse only used or fuse blows in
			situations or if battery used for starter motor with lights on will		starter circuit if 10 A used, etc.
			need too large a fuse – damage occurs before fuse blows/AW		
			Total question 2	15	