Question			Answer	Marks	Guidance
1	a		p.d./voltage (across component) divided by current (in it)	B1	accept V / I with V and I defined; per (unit) current, etc
	b	i	$\begin{aligned} & R=\rho / / A \\ & =1.7 \times 10^{-8} \times 20 \times \mathrm{d} / 4 \mathrm{~d}^{2}=1.7 \times 10^{-8} \times 5 / 3.8 \times 10^{-10} \\ & =220(\Omega) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & \text { allow } A=4 \pi r^{2}=4.5 \times 10^{-19} \text { giving } 285 \Omega \\ & \text { accept } 220 \text { to } 230 \Omega \end{aligned}$
		ii	$\mathrm{n}=1 / \mathrm{d}^{3}=\left(1.8 \times 10^{28}\right)$	A1	accept alternatives, e.g. 80/volume
		iii	$\begin{aligned} & I=\text { nAev } \\ & =1.8 \times 10^{28} \times 4 \times\left(3.8 \times 10^{-10}\right)^{2} \times 1.6 \times 10^{-19} \times 1.9 \times 10^{-5} \\ & =3.2 \times 10^{-14}(\mathrm{~A}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	1 mark for substitution into formula, ecf n, A values accept 3.16 and 3.5 (using $n=2 \times 10^{28}$) accept 2.48 and 2.76 (for 285Ω)
		iv	$\begin{aligned} \mathrm{P} & =I^{2} \mathrm{R} \\ & =\left(3.2 \times 10^{-14}\right)^{2} \times 200 \times 10^{9} \\ & =2.0 \times 10^{-16}(\mathrm{~W}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$	ecf b(i) \& (iii) accept 1 SF as estimate; can obtain 1.2 to 2.8 using all values possible in (iii)
	c		electron moves at drift velocity signal travels at/close to the speed of light	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	accept answers explaining idea of drift velocity
			Total	12	

Question			Expected Answers	M	Additional Guidance
	a		current moves from + to - (of battery in circuit) and electrons move from - to +	B1	
	b		$\mathrm{C} \mathrm{s}^{-1} \vee \Omega^{-1}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	2 correct 2 marks; 1 correct 1 mark, withhold a mark for each additional answer given
	c	i	statement of Kirchhoff's first law or conservation of charge	B1	accept wires are in series or current is the same (at every point) in a series circuit/AW not current in = current out
		ii1	$R=\rho l / A$ calculation to justify $\mathrm{R}=72 \Omega$	$\begin{aligned} & \hline \text { B1 } \\ & \text { A1 } \end{aligned}$	accept $\mathrm{R} \alpha \mathrm{I}$ and $\mathrm{R} \alpha 1 / \mathrm{A}$ or similar method/argument must be convincing accept $3 / 1 / 2 \times 12$ but not $3 \times 2 \times 12$
		ii2	$\begin{aligned} & \mathrm{R}=\text { sum of } \mathrm{Rs} \\ & \mathrm{R}=84 \Omega \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	accept Rs in series ecf (c)(ii) 1
		iii	$\begin{aligned} & \hline \text { select I }=n A e v \\ & v=4.0 \times 10^{-5}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \hline \end{aligned}$	allow v a 1/A accept $4 \times 10^{-5}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ no SF error
			Total question 1	10	

Question			Expected Answers	Marks	Additional Guidance
3	(a)		$E=I(R+r)$	B1	
	(b)	$\text { (i) } \begin{array}{r} 1 \\ 2 \end{array}$	$\begin{aligned} & 0.80 \Omega \\ & 6.4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	
		(ii)	(sum of) e.m.f.s = sum /total of p.d.s/sum of voltages (in a loop)	B1	
		(iii)	$\begin{aligned} & \hline 6.4=0.80 \mathrm{I} \\ & \mathrm{I}=8.0 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & \text { can be } \mathbf{2} \text { ecf from (b)(i), eg 21.6/0.8 } \\ & =27 \mathrm{~A}(1 \mathrm{ecf}) \text { or } 21.8 / 0.68=31.8 \mathrm{~A}(2 \mathrm{ecf}) \end{aligned}$
	(c)	(i)	$\begin{aligned} \mathrm{Q} & =\mathrm{It}=2.5 \times 6 \times 60 \times 60 \\ & =54000(\mathrm{C}) \end{aligned}$	$\begin{aligned} & \hline \text { C1 } \\ & \text { A1 } \end{aligned}$	allow 1 mark if forgets one or two 60's giving 900 C or 15 C
		(ii)	$\begin{aligned} \text { energy } & =\text { QE }=54000 \times 14 \\ & =756000(\mathrm{~J}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	allow (use of 12 V gives) 648000 J for 1 mark
		(iii)	$\begin{aligned} & \text { energy loss }=\mathrm{I} 2 \mathrm{Rt}=\mathrm{VIt}=2 \times 2.5 \times 6.0 \times 60 \times 60=108000 \mathrm{~J} \\ & \text { percentage }=(108000 / 756000) \times 100=14 \% \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	accept $\mathrm{Q} \Delta \mathrm{V}=54000 \times 2.0=108000 \mathrm{~J}$ accept $\mathrm{Q} \triangle \mathrm{V} / \mathrm{QE}=2.0 / 14.0=14 \%$ not $756000 / 54000=14 \%$
			Total question 2	12	

